[:de]Ultrahochleistungs-Speicher mit extrem kurzen Lade- und Entladezeiten / ZSW entwickelt Stromspeicher mit nanostrukturierten Elektroden und wässrigem Elektrolyt[:en]Ultra-high Capacity Energy Storage with Super-fast Charge and Discharge Rates / ZSW develops storage element with nanostructured electrodes and aqueous electrolytes[:]

[:de]Ultrahochleistungs-Speicher mit extrem kurzen Lade- und Entladezeiten / ZSW entwickelt Stromspeicher mit nanostrukturierten Elektroden und wässrigem Elektrolyt[:en]Ultra-high Capacity Energy Storage with Super-fast Charge and Discharge Rates / ZSW develops storage element with nanostructured electrodes and aqueous electrolytes[:]

[:de]

Ultrahochleistungs-Speicher können innerhalb von kurzer Zeit viel Strom abgeben und aufnehmen. Für viele Industrieanwendungen und Hybridautos ist das besonders interessant. Wissenschaftler am Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) haben nun Elektroden für neuartige Stromspeicher entwickelt, die die Lade- und Entladegeschwindigkeit bis auf drei Sekunden reduzieren können. Möglich wurde der technische Fortschritt durch eine nanostrukturierte Oberfläche der Elektroden. Als Elektrolyt verwendeten die Forscher eine wasserbasierte, nicht brennbare Lösung – der Speicher kann so auch bei hohen und tiefen Temperaturen genutzt werden. Das ZSW erzielte die Forschungsergebnisse im Rahmen des Projekts FastStorage BW II, das vom Land Baden-Württemberg mit drei Millionen Euro gefördert wird.

Um maximale Reichweiten für Elektrofahrzeuge zu erreichen, liegt der Fokus bei der Lithium-Ionen-Technologie auf der Optimierung der Energiedichte. Muss Elektrizität aber kurzzeitig aufgenommen und wieder abgegeben werden, etwa bei Gabelstaplern oder Hybridautos, bieten sich Hochleistungsspeicher an. Sie werden auch Superkondensatoren oder elektrochemische Doppelschichtkondensatoren genannt und können viel schneller als Lithiumakkus ge- und entladen werden.

Ultraschnell und sicher durch wasserbasiertes System

Die Leistungsfähigkeit von Speichern wird ganz wesentlich von der Elektrodentechnologie bestimmt. Bei der neuen ZSW-Entwicklung nutzten die Forscher als Aktivmaterial für die positive Elektrode nanostrukturiertes Nickel, das nach einem speziellen Verfahren hergestellt und mit Nickelhydroxid beschichtet wird. Die negative Elektrode beschichteten sie mit kommerzieller Aktivkohle anstatt mit Metallhydrid. Als Elektrolyt kam eine wässrige Kaliumhydroxidlösung zum Einsatz. Im Vergleich zu den organischen Elektrolyten bei Superkondensatoren ist sie nicht brennbar. Das trägt zu einer erhöhten Sicherheit der Zelle bei.

Eine erste Demonstrationszelle wurde bereits angefertigt. „Die C-Rate, das heißt der Wert für die Entladegeschwindigkeit, beträgt fast 1.200“, sagt Prof. Dr. Werner Tillmetz, ZSW-Vorstandsmitglied und Leiter des Geschäftsbereichs Elektrochemische Energietechnologien. „Der neue Speicher ist daher in der Lage, innerhalb von rund drei Sekunden die gesamte Kapazität zur Verfügung zu stellen.“ Das ist sehr viel mehr als bei Lithium-Ionen-Batterien, die typischerweise mit C-Werten im einstelligen Bereich betrieben werden.

Bessere Elektroden durch Nanostrukturierung

Eine Nanostrukturierung der neuen Elektroden machte diesen Fortschritt möglich. Üblich ist bisher eine Mikrostrukturierung, die eine etwa 100 bis 1.000 Mal geringere Oberfläche als das ZSW-Material hat. Die Folge der feineren Strukturierung ist enorm: Die Oberfläche nimmt zu und erlaubt es, die Ladungsträger wesentlich schneller und mit geringerem Widerstand zu übertragen.

„Hergestellt wurde die Zelle in einem konventionellen Rakel-Beschichtungsverfahren im Labormaßstab“, erklärt Tillmetz. „Der Herstellprozess lässt sich daher ohne größeren Aufwand auf großflächigere Zellen hochskalieren. Damit rückt die Herstellung von Prototypen ein gutes Stück näher.“

Der Einsatz von Ultrahochleistungsspeichern ist überall dort sinnvoll, wo kurzzeitig ein sehr hoher Strombedarf gedeckt werden muss und kurzzeitig viel Strom zurückgespeichert werden soll. Dazu gehören insbesondere industrielle Anwendungen wie Hochregallager sowie Intralogistik-Shuttle-Systeme und Hybridautos. Das jährliche Marktpotenzial für diese Zellen ist erheblich. In zwei bis vier Jahren können es bis zu 300 Millionen Euro sein. Das Projekt FastStorage BW II läuft noch bis Ende 2017.

Das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) gehört zu den führenden Instituten für angewandte Forschung auf den Gebieten Photovoltaik, regenerative Kraftstoffe, Batterietechnik und Brennstoffzellen sowie Energiesystemanalyse. An den drei ZSW-Standorten Stuttgart, Ulm und Widderstall sind derzeit rund 230 Wissenschaftler, Ingenieure und Techniker beschäftigt. Hinzu kommen 90 wissenschaftliche und studentische Hilfskräfte.
Ansprechpartner Pressearbeit

Tiziana Bosa, Zentrum für Sonnenenergie- und
Wasserstoff-Forschung Baden-Württemberg (ZSW), Helmholtzstr. 8,
89081 Ulm, +49 (0)731 9530-601, Fax: +49 (0)731 9530-666,
tiziana.bosa@zsw-bw.de, www.zsw-bw.de

Axel Vartmann, PR-Agentur Solar Consulting GmbH,
Emmy-Noether-Str. 2, 79110 Freiburg,
Tel.: +49 (0)761 380968-23, Fax: +49 (0)761 380968-11,
vartmann@solar-consulting.de, www.solar-consulting.de

[:en]Ultra-high capacity storage elements are able to load and deliver a great deal of energy in a very short time. Many industrial applications as well as hybrid vehicles can benefit from this capability. Scientists at the Centre for Solar Energy and Hydrogen Research in Baden-Wuerttemberg (ZSW) recently developed electrodes for novel power storage elements that can cut charge and discharge time to three seconds. The electrodes feature a nanostructured surface that made this leap in performance possible. Researchers used a water-based, non-flammable solution for the electrolyte, so this storage element can handle high and low temperatures. The ZSW achieved these results as part of the FastStorage BW II research project, which the state of Baden-Württemberg is funding with a €3 million grant.
Efforts to maximize electrical vehicles’ range focus on optimizing lithium-ion batteries’ energy density. However, forklifts, hybrid cars and the like require electrical power to be loaded and delivered at very short notice. High-performance capacitors are the preferred option for this sort of application. Also called supercapacitors, ultracapacitors and electrochemical double-layer capacitors, these elements can be charged and discharged much faster than lithium batteries.

Ultra fast and safe courtesy of a water-based system

An energy storage device’s performance is determined by the electrodes’ underlying technology. For this newly developed element, ZSW researchers chose nanostructured nickel, manufactured in a special process and coated with nickel hydroxide, as the active material for the positive electrode. They coated the negative electrode with commercial activated carbon rather than with metal hydride.

An aqueous potassium hydroxide solution serves as the electrolyte. Unlike supercondensers’ organic electrolytes, it is not combustible, which makes this cell that much safer.

The first demo cell has already been made. “Its C rate, or discharge rate, is close to 1,200,” says Prof. Werner Tillmetz, a member of ZSW’s board of directors and head of the Electrochemical Energy Technologies division. “The new storage element is thus able to deliver its entire capacity within roughly three seconds.” With a C rate typically in the single-digit range, lithium-ion batteries come nowhere near this performance.

Nanostructuring to enhance electrodes

The scientists achieved this technological advance with the benefit of the new electrodes’ nanostructure. The microstructured surface of the conventional storage element used to date has a lot less area than the ZSW material’s nanostructured surface, which is 100 to 1,000 times greater. The finer structuring has an enormous impact, vastly increasing the surface area and enabling charge carriers to be transferred much faster and with less resistance.

“The cell was produced by way of conventional blade-coating on a laboratory scale,” explains Tillmetz. “The manufacturing process can be easily scaled up to produce large-area cells, so the production of prototypes isn’t far off.”

Ultra-high capacity storage elements come in very handy in scenarios where a great deal of electrical power has to be charged and discharged very quickly and at short notice. These include industrial applications such as high-bay storage and retrieval machines, intralogistic shuttle systems and hybrid cars. The annual market potential for such cells is considerable. This market could be worth up to €300 million in two to four years time. The FastStorage BW II project is still underway and will run until the end of 2017.
The Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (Centre for Solar Energy and Hydrogen Research Baden-Württemberg, ZSW) is one of the leading institutes for applied research in the areas of photovoltaics, renewable fuels, battery technology, fuel cells and energy system analysis. There are currently around 230 scientists, engineers and technicians employed at ZSW’s three locations in Stuttgart, Ulm and Widderstall. In addition, there are 90 research and student assistants.
Media contacts

Tiziana Bosa, Zentrum für Sonnenenergie- und
Wasserstoff-Forschung Baden-Württemberg (ZSW), Helmholtzstr. 8,
89081 Ulm, +49 (0)731 9530-601, Fax: +49 (0)731 9530-666,
tiziana.bosa@zsw-bw.de, www.zsw-bw.de

Axel Vartmann, PR-Agentur Solar Consulting GmbH,
Emmy-Noether-Str. 2, 79110 Freiburg,
Tel.: +49 (0)761 380968-23, Fax: +49 (0)761 380968-11,
vartmann@solar-consulting.de, www.solar-consulting.de[:]

Haben wir Ihr Interesse geweckt?

Solar Consulting GmbH
Emmy-Noether-Straße 2
79110 Freiburg im Breisgau

Fon +49 761 380968-0
info@solar-consulting.de

Ihr direkter Weg zu uns: